Promoting effect of phosphoric acid on zirconia catalysts in selective synthesis of dimethyl carbonate from methanol and carbon dioxide

Yoshiki Ikeda, Tomohiro Sakaihori, Keiichi Tomishige* and Kaoru Fujimoto*

Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

Received 28 January 2000; accepted 21 March 2000

The addition of phosphoric acid to zirconia catalysts promoted the activity for dimethyl carbonate synthesis from methanol and carbon dioxide with high selectivity, and the reactions proceeded at much lower temperature on H_3PO_4/ZrO_2 than on zirconia catalysts. This suggested that the surface acidity enhanced by phosphoric acid contributed to higher activity.

Keywords: dimethyl carbonate, phosphoric acid, zirconia, surface acidity

1. Introduction

Dimethyl carbonate (DMC) has attracted much attention in terms of a non-toxic substitute for dimethyl sulfate and phosgene, which are toxic and corrosive methylating or carbonylating agents [1]. In addition, DMC is considered to be an option for meeting the oxygenate specifications for transportation fuel [2]. Three kinds of large-scale production methods of DMC have been known: (1) DMC produced by the stoichiometric reaction of methanol and phosgene, (2) a process based on the oxidative carbonylation of CH₃OH with carbon monoxide and oxygen catalyzed by cuprous chloride [3-5], and (3) an oxidative carbonylation process using a palladium catalyst and methyl nitrite promoter [6]. In the second and third production methods, raw materials are CH₃OH, CO and O₂. In contrast, the utilization of carbon dioxide as the raw material of the DMC synthesis process has been attempted [7]. Some catalysts have been reported to be effective for the synthesis of DMC from CH₃OH and CO₂:

$$2CH_3OH + CO_2 \rightarrow (CH_3O)_2CO + H_2O \tag{1}$$

It has been reported that DMC was synthesized by equation (1) in the presence of organo-tin compounds [8,9], Sn(IV) and Ti(IV) alkoxides and metal acetates [10]. Recently we have reported that DMC was selectively synthesized from CH₃OH and CO₂ using zirconia as a solid catalyst, though dimethyl ether (DME) was formed on various other catalysts and DMC was not detected at all [11]. It was found that the DMC formation rate was much dependent on the structure of ZrO₂. On ZrO₂ prepared by the calcination of zirconium hydroxide at 673 K, the highest rate of DMC formation was observed [11].

From this study, it was suggested that both acid and base functions on the catalyst surface are necessary for DMC synthesis from CH₃OH and CO₂ (equation (1)) [11]. ZrO₂ has been known to exhibit both weakly acidic and weakly basic properties [12-15]. We performed the surface modification of ZrO₂ in order to enhance the surface acidity and to promote the reaction activity. Best known method for the enhancement of surface acidity is the modification of zirconia with sulfate ions, known as superacidic catalyst [16]. As a suitable acid-strength modification, we chose phosphoric acid. H₃PO₄ supported on silica is used in the vapor-phase industrial process for the synthesis of isopropylbenzene from benzene and propylene [17]. H₃PO₄/SiO₂ has medium strength acidity, which inhibits propylene polymerization. In this letter the promoting effect of H₃PO₄ on ZrO₂ in the synthesis of DMC from CH₃OH and CO₂ is reported.

2. Experimental

ZrO₂ catalyst was prepared by calcining a commercially available zirconium hydroxide (ZrO₂·xH₂O, Nakarai Tesque Inc.) at 673 K for 3 h under air atmosphere. The calcination temperature was optimized by our previous study [11]. H₃PO₄/ZrO₂ catalysts were prepared by impregnating ZrO₂·xH₂O with aqueous H₃PO₄ solution (Aldrich, 85 wt%). Water was removed by heating and the sample was dried at 393 K for 10 h, followed by calcining at different temperatures (573–923 K) for 3 h under air atmosphere. This preparation method was referred to that of sulfated zirconia. Another preparation method was attempted. H₃PO₄ was loaded directly on ZrO₂ calcined at 673 K. After the impregnation, the catalyst was dried at 393 K and at 673 K for 3 h. This catalyst is represented by

^{*} To whom correspondence should be addressed.

 $H_3PO_4/ZrO_2(D)$. The loading of P is denoted as the molar ratio P/Zr in parentheses. Fine-powder catalysts were used.

The reaction was carried out in a stainless-steel autoclave reactor with an inner volume of 70 ml. The standard procedure is as follows: 6.1 g CH₃OH (192 mmol, Kanto Chemical, 99.8% min.) and 0.5 g catalyst were put into an autoclave, and then the reactor was purged with CO₂. After that, CO₂ (200 mmol, Takachiho Trading Co. Ltd., 99.99%) was introduced into the autoclave and initial pressure is about 5 MPa at room temperature. The reactor was heated and magnetically stirred constantly during the reaction. The reaction was carried out at different temperatures (383-443 K) for 2 h. Products in both gas phase and liquid phase were analyzed by a gas chromatograph (GC) equipped with FID and TCD. The separate column packing is PEG-6000 + Porapak N and Gaskuropak 54 for FID-GC, MS-13X and Porapak Q for TCD-GC. All the products were also identified by GC-MS. In the gas phase, no products were observed. CO was below the detection limit of FID-GC equipped with methanator. Under all the reaction conditions shown in this letter, DMC was the only product and DME, which is the expectable by-product, was below the detection limit of FID-GC.

XRD spectra and BET surface area of the samples were measured with RINT-2400 (Rigaku) and Gemini (Micromeritics, N₂), respectively.

3. Results and discussion

Figure 1 shows the dependence of DMC amount on reaction temperature over ZrO_2 and H_3PO_4/ZrO_2 (P/Zr = 0.025, 0.05, 0.1). DMC formation on ZrO_2 is controlled by the reaction rate. The dramatic additive effect of H_3PO_4 to ZrO_2 catalyst was easily observed at all reaction tempera-

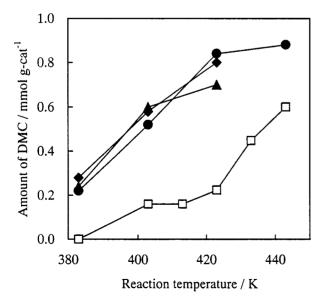


Figure 1. Dependence of DMC amount on reaction temperature over ZrO_2 (\square) and H_3PO_4/ZrO_2 (P/Zr=0.025 (\bullet), 0.05 (\blacktriangle) and 0.1 (\blacklozenge)). Reaction conditions: $CH_3OH:CO_2=192$ mmol: 200 mmol, catalyst weight 0.5 g, reaction time 2 h.

tures. It seems that the amount of DMC on H_3PO_4/ZrO_2 (P/Zr = 0.025) at 443 K reached the equilibrium level. The DMC amount on H_3PO_4/ZrO_2 at 423 K became about four times larger than that on ZrO_2 . The amount of DMC on H_3PO_4/ZrO_2 at 403 K was comparable to that on ZrO_2 at 443 K. While DMC formation was not observed on ZrO_2 at 383 K, about 0.20 mmol g-cat⁻¹ DMC was formed on H_3PO_4/ZrO_2 . It should be noted that the surface modification of ZrO_2 with H_3PO_4 promoted this reaction remarkably. Besides, the amounts of DME and CO, which are expectable by-products, were also smaller than the detection limit on H_3PO_4/ZrO_2 under these reaction conditions. Therefore, we estimated the selectivity of DMC formation on H_3PO_4/ZrO_2 as 100%. By the addition of H_3PO_4 , the reaction temperature could be lowered by 40 K.

Figure 2 shows the dependence of DMC amount and surface area of H_3PO_4/ZrO_2 on H_3PO_4 loading. The amount of DMC and the surface area increased with the loading of H_3PO_4 in the range of low P/Zr. The amount of DMC reached a maximum at P/Zr = 0.05, and then decreased at P/Zr > 0.05. DMC formation was not observed at P/Zr > 0.5. The surface area reached a maximum at P/Zr = 0.1, and then decreased at P/Zr > 0.1.

XRD patterns of H_3PO_4/ZrO_2 with various H_3PO_4 loadings are shown in figure 3. On ZrO_2 , both metastable tetragonal phase and monoclinic phase were observed. The metastable tetragonal phase increased and the monoclinic phase decreased with the loading of H_3PO_4 . Metastable tetragonal phase was predominantly formed on H_3PO_4/ZrO_2 (P/Zr = 0.05), which exhibited the highest activity, as shown in figure 2. On higher H_3PO_4 loading, a new peak appeared around $2\theta = 20^\circ$. This peak has not been identified, but it may be due to the salt formed between Zr ions and H_3PO_4 . These results in figures 2 and 3 sug-

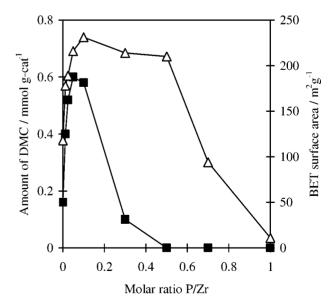


Figure 2. Dependence of DMC amount (■) and surface area (△) of H₃PO₄/ZrO₂ on H₃PO₄ loading. Reaction conditions: CH₃OH: CO₂ = 192 mmol: 200 mmol, catalyst weight 0.5 g, reaction temperature 403 K, reaction time 2 h.

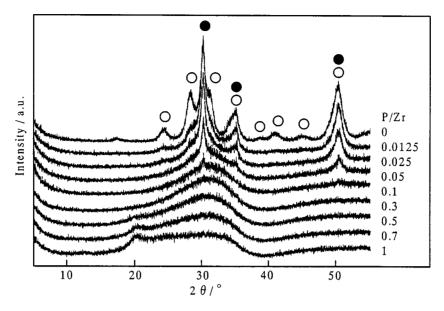


Figure 3. Cu K_α XRD patterns of H₃PO₄/ZrO₂ with various H₃PO₄ loadings. Crystal structure: metastable tetragonal (•), monoclinic (ο).

 $\label{eq:total_continuity} \mbox{Table 1}$ Dependence of DMC amount and surface area on calcination temperature of catalysts. a

Catalyst	Calcination temp. (K)	Amount of DMC (mmol g-cat ⁻¹)	BET surface area (m ² g ⁻¹)
$H_3PO_4/ZrO_2 \ (P/Zr = 0.05)$	573	0.46	260
	673	0.60	216
	773	0.20	154
	923	not detected	106
$H_3PO_4/ZrO_2(D) \ (P/Zr = 0.05)$	673	not detected	106

 $[^]a$ Reaction conditions: CH_3OH : $CO_2=192\ mmol$: $200\ mmol$, catalyst weight 0.5 g, reaction temperature 403 K, reaction time 2 h.

gested that the most active phase for DMC formation is metastable tetragonal ZrO₂ modified with H₃PO₄. The formation amount is not directly related to the surface area of catalysts, as shown in figure 2.

Table 1 shows the dependence of DMC amount and surface area on calcination temperature of H₃PO₄/ZrO₂ (P/Zr = 0.05). The surface area decreased with calcination temperature. The amount of DMC increased to a maximum at 673 K and then decreased as the temperature was increased further. From the comparison between figure 2 and table 1, the catalyst can be optimized: the optimum calcination temperature is 673 K and the optimum composition of the catalyst is P/Zr = 0.05. In addition, we prepared H₃PO₄/ZrO₂ by another method. H₃PO₄ was loaded directly on ZrO₂ which was calcined at 673 K. This catalyst is represented by H₃PO₄/ZrO₂(D) in table 1. DMC formation on H₃PO₄/ZrO₂(D) was not observed. This result indicates that the effective active site is formed by the interaction between H₃PO₄ and zirconium hydroxide. Similar tendency has been observed in the case of sulfated zirconia catalysts [18]. It is suggested that the surface modification of ZrO₂ with phosphoric acid enhances the surface acidity and this causes higher activity. At the present stage, the structure of the catalytic active site is not clear. Further investigation and catalyst characterization are necessary for the catalyst development.

4. Conclusions

The modification of ZrO_2 catalysts with phosphoric acid was found to be very effective for the enhancement of the catalytic activity in DMC synthesis from methanol and CO_2 . This modification can decrease the reaction temperature drastically compared to the unpromoted zirconia. From the results of catalyst characterization, it is suggested that the active phosphoric species on metastable tetragonal ZrO_2 is formed by the interaction between H_3PO_4 and zirconium hydroxide during catalyst preparation.

References

- [1] Y. Ono, Appl. Catal. A 155 (1997) 133.
- [2] M.A. Pacheco and C.L. Marshall, Energy Fuels 11 (1997) 2.
- [3] U. Romano, R. Tesei, M.M. Mauri and P. Rebora, Ind. Eng. Chem. Prod. Res. Dev. 19 (1980) 396.
- [4] D. Molzahn, M.E. Jones, G.E. Hartwell and J. Puga, US Patent 5,387,708 (1995).
- [5] S.S.T. King, M.E. Jones and M.M. Olken, US Patent 5,391,803 (1995).

- [6] T. Matsuzaki and A. Nakamura, Catal. Surv. Japan 1 (1997) 77.
- [7] W.J. Peppel, Ind. Eng. Chem. 50 (1958) 767.
 [8] S. Sakai, T. Fujinami, T. Yamada and S. Furusawa, Nippon Kagaku Kaishi 10 (1975) 1789.
- [9] J. Kizlink, Collect. Czech. Chem. Commun. 58 (1993) 1399.
- [10] J. Kizlink and I. Pastucha, Collect. Czech. Chem. Commun. 60 (1995) 687.
- [11] K. Tomishige, T. Sakaihori, Y. Ikeda and K. Fujimoto, Catal. Lett. 58 (1999) 225.
- [12] T. Yamaguchi, Sekiyu Gakkaishi 36 (1993) 250.
- [13] T. Yamaguchi and M. Okawa, Shokubai (Catalysts & Catalysis) 38 (1996) 260.
- [14] B.-Q. Xu, T. Yamaguchi and K. Tanabe, Chem. Lett. (1988) 1663.
- [15] H. Nakabayashi, Chem. Lett. (1996) 945.
- [16] K. Arata, Adv. Catal. 37 (1990) 177.
- [17] P.R. Pujado, J.R. Salazar and C.V. Berger, Hydrocarbon Process. 55 (1976) 91.
- [18] K. Arata, Adv. Catal. 37 (1990) 184.